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Modern DNNs: big, bigger, humongous

Al and Memory Wall
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[Desislavov et al., “Trends in Al inference energy consumption”, Sustainable Computing: Informatics and Systems, 2023]
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Energy consumption of deep learning

— Training different LLMs
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[Yuzhuo Li et al., “The Unseen Al Disruptions for Power Grids: LLM-Induced Transients”, 2024]
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And Generative Al doesn’t help...
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[A.S. Luccioni et al., “Power Hungry Processing: Watts Driving the Cost of Al Deployment?”, 2024]
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Al Energy usage: inference is dominant!

® | et’s take ChatGPT as an example and do the math:
v The training of GPT-4 consumed approximately 60 GigaWatt-hours
v ChatGPT receives more than 1 billion (inference) queries per day

v' A single ChatGPT query takes roughly 3 watt-hours

® After 20 days of usage, inference has consumed more
energy than training
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Al is (currently) powered by the Cloud
Energy usage of data centers

Altogether, data centers use more electricity than
most countries
Only 16 nations, including the US and China, consume more
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Note: Data center energy consumption through Q1 2024. National energy consumption levels
are actual through 2022 and projected for 2023 and 2024.
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And let’s not forget water usage of Al

Global Al's Scope 1 & 2 Water Withdrawal in 2027
Est. 4.2~6.6 Billion Cubic Meters
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A\l Al Al 4
4~6x Annual Water Withdrawal of Denmark

[S. Ren, “How much water does Al consume? The public deserves to know*”, 2023]
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And let’s not forget water usage of Al

[S. Ren, “How much water does Al consume? The public deserves to know*, 2023]
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A clear trend towards Edge Al

* Lower latency
* More privacy
Lower energy
consumption

Neural ne“

Edge devices Edge devices
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Edge Al is challenging

e Modern DNNs are too big to fit on edge/end devices due
to limited power budget and compute/memory resources
e Solutions:
v' DNN Compression
v' Hardware-aware Network Architecture Search (NAS)
v’ Distribution of DNNs across the edge-to-cloud continuum
v" Distribution of DNNs across edge devices
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Distribution of DNNs across Edge devices
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Vertical/Pipelined partitioning
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Alternative: “horizontal” partitionings
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A CNN example
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DNN partitioning and distributed
execution:

A lot of tedious engineering and a large
(parallel) programming effort!



AutoDICE: automated distributed DNN inference
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But wait a minute,
Edge devices are not reliable!



Robust, distributed DNN inference at the Edge

Robust partitioning and
distribution
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Robust, distributed DNN inference at the Edge
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Filter Partitioning Neurons Grouping Methods
[X. Guo, A.D. Pimentel, and T. Stefanov, ASP-DAC 24]
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Robust, distributed DNN inference at the Edge

= ® a@ @
. ny| ). S
g / na Ny N5 5
= = b. ((n1) (P2 n1) (ny ny) (72
> —
Uz
Filter Partitioning Neurons Grouping Methods

[X. Guo, A.D. Pimentel, and T. Stefanov, ASP-DAC 24]
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Robust, distributed DNN inference at the Edge

Filter Partitioning

[X. Guo, A.D. Pimentel, and T. Stefanov, ASP-DAC 24]
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How to split a Transformer robustly?
Partial Split Method
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Transformers (a) even split (b) partial split

Target: Search (71,72, ...,7nN) for N blocks

Tunable fraction r of replicated layer weights provides tradeoff between robustness and

memory usage:

r=0.0 r=1.0

Less Robustness G Maximum Robustness
Less Memory More Memory

Less Computation More Computation

[X. Guo, A.D. Pimentel, and T. Stefanov, IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, Vol 43 (nr. 11), 2024]
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Experimental results: robustness evaluation
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Experimental results: scalability
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[X. Guo, A.D. Pimentel, and T. Stefanov, IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, Vol 43 (nr. 11), 2024]
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