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Modern DNNs: big, bigger, humongous
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[Gholami et al., "AI and Memory Wall," IEEE Micro, 2024]

[Desislavov et al., “Trends in AI inference energy consumption”, Sustainable Computing: Informatics and Systems, 2023]
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Energy consumption of deep learning
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Training different LLMs

[Yuzhuo Li et al., “The Unseen AI Disruptions for Power Grids: LLM-Induced Transients“, 2024]
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And Generative AI doesn’t help…
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[A.S. Luccioni et al., “Power Hungry Processing: Watts Driving the Cost of AI Deployment?”, 2024]
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AI Energy usage: inference is dominant!

• Let’s take ChatGPT as an example and do the math:

✓The training of GPT-4 consumed approximately 60 GigaWatt-hours

✓ChatGPT receives more than 1 billion (inference) queries per day

✓A single ChatGPT query takes roughly 3 watt-hours

• After 20 days of usage, inference has consumed more 
energy than training

6



Andy D. Pimentel

AI is (currently) powered by the Cloud
Energy usage of data centers
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And let’s not forget water usage of AI
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[S. Ren, “How much water does AI consume? The public deserves to know“, 2023]
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And let’s not forget water usage of AI

9

[S. Ren, “How much water does AI consume? The public deserves to know“, 2023]

A handful of ChatGPT queries (inferences) 
consume about 0.5 Liter of water!
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A clear trend towards Edge AI
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Neural network

Edge devices

Edge AI

Edge devices

• Lower latency
• More privacy
• Lower energy

consumption
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Edge AI is challenging

• Modern DNNs are too big to fit on edge/end devices due 
to limited power budget and compute/memory resources

• Solutions:
✓ DNN Compression 

✓ Hardware-aware Network Architecture Search (NAS)

✓ Distribution of DNNs across the edge-to-cloud continuum 

✓ Distribution of DNNs across edge devices

11
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Distribution of DNNs across Edge devices
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Vertical/Pipelined partitioning

In collaboration with:
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=

Alternative: “horizontal” partitionings

A CNN example



DNN partitioning and distributed 
execution: 

A lot of tedious engineering and a large 
(parallel) programming effort!
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AutoDICE: automated distributed DNN inference
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DNN model 
(.onnx)

HW 
platform 

description

Mapping 
and splitting 
description

AutoDICE

Automated model splitting
✓Vertical/horizontal partitioning

Automated code generation
✓MPI and OpenMP based

Automated deployment

Automated mapping and splitting 
exploration

• Genetic Algorithm based search
✓ Deploying analytical models 

+ AutoDiCE measurements
[X. Guo, A.D. Pimentel and T. Stefanov., IEEE Internet of Things Journal, Vol. 10(7), 
2023]



But wait a minute, 
Edge devices are not reliable! 

....
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Robust, distributed DNN inference at the Edge
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In collaboration with:

Robust partitioning and 
distribution   
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Robust, distributed DNN inference at the Edge
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a.

b.

c.

Grouping MethodsFilter Partitioning Neurons

[X. Guo, A.D. Pimentel, and T. Stefanov, ASP-DAC ‘24]
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Robust, distributed DNN inference at the Edge
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a.

b.

c.

Grouping MethodsFilter Partitioning Neurons

[X. Guo, A.D. Pimentel, and T. Stefanov, ASP-DAC ‘24]
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Robust, distributed DNN inference at the Edge
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a.

b.

c.

Grouping MethodsFilter Partitioning Neurons

[X. Guo, A.D. Pimentel, and T. Stefanov, ASP-DAC ‘24]
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How to split a Transformer robustly? 
Partial Split Method

Tunable fraction r of replicated layer weights provides tradeoff between robustness and 
memory usage:

r = 0.0
Less Robustness
Less Memory
Less Computation

r = 1.0
Maximum Robustness
More Memory
More Computation

[X. Guo, A.D. Pimentel, and T. Stefanov, IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, Vol 43 (nr. 11), 2024]
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Experimental results: robustness evaluation
Robustness-unaware layer-wise partitioning

Baseline

[X. Guo, A.D. Pimentel, and T. Stefanov, IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, Vol 43 (nr. 11), 2024]
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[Nvidia Jetson Xavier edge devices]
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Experimental results: scalability

Distributed inference 
with r = 0

[X. Guo, A.D. Pimentel, and T. Stefanov, IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, Vol 43 (nr. 11), 2024]
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